3.3.78 \(\int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx\) [278]

3.3.78.1 Optimal result
3.3.78.2 Mathematica [C] (verified)
3.3.78.3 Rubi [A] (verified)
3.3.78.4 Maple [A] (verified)
3.3.78.5 Fricas [A] (verification not implemented)
3.3.78.6 Sympy [F(-1)]
3.3.78.7 Maxima [B] (verification not implemented)
3.3.78.8 Giac [A] (verification not implemented)
3.3.78.9 Mupad [B] (verification not implemented)

3.3.78.1 Optimal result

Integrand size = 18, antiderivative size = 93 \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a^2 b x}{\left (a^2+b^2\right )^2}+\frac {b x}{2 \left (a^2+b^2\right )}-\frac {a b^2 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^2}+\frac {b \cos (x) \sin (x)}{2 \left (a^2+b^2\right )}+\frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )} \]

output
-a^2*b*x/(a^2+b^2)^2+1/2*b*x/(a^2+b^2)-a*b^2*ln(a*cos(x)+b*sin(x))/(a^2+b^ 
2)^2+1/2*b*cos(x)*sin(x)/(a^2+b^2)+1/2*a*sin(x)^2/(a^2+b^2)
 
3.3.78.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.59 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.88 \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {4 i a b^2 \arctan (\tan (x))-a \left (a^2+b^2\right ) \cos (2 x)-2 b \left ((a+i b)^2 x+a b \log \left ((a \cos (x)+b \sin (x))^2\right )\right )+b \left (a^2+b^2\right ) \sin (2 x)}{4 \left (a^2+b^2\right )^2} \]

input
Integrate[(Cos[x]^2*Sin[x])/(a*Cos[x] + b*Sin[x]),x]
 
output
((4*I)*a*b^2*ArcTan[Tan[x]] - a*(a^2 + b^2)*Cos[2*x] - 2*b*((a + I*b)^2*x 
+ a*b*Log[(a*Cos[x] + b*Sin[x])^2]) + b*(a^2 + b^2)*Sin[2*x])/(4*(a^2 + b^ 
2)^2)
 
3.3.78.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {3042, 3588, 3042, 3044, 15, 3115, 24, 3577, 3042, 3612}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin (x) \cos ^2(x)}{a \cos (x)+b \sin (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (x) \cos (x)^2}{a \cos (x)+b \sin (x)}dx\)

\(\Big \downarrow \) 3588

\(\displaystyle \frac {b \int \cos ^2(x)dx}{a^2+b^2}+\frac {a \int \cos (x) \sin (x)dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \int \sin \left (x+\frac {\pi }{2}\right )^2dx}{a^2+b^2}+\frac {a \int \cos (x) \sin (x)dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {b \int \sin \left (x+\frac {\pi }{2}\right )^2dx}{a^2+b^2}+\frac {a \int \sin (x)d\sin (x)}{a^2+b^2}-\frac {a b \int \frac {\cos (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {b \int \sin \left (x+\frac {\pi }{2}\right )^2dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {b \left (\frac {\int 1dx}{2}+\frac {1}{2} \sin (x) \cos (x)\right )}{a^2+b^2}-\frac {a b \int \frac {\cos (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {a b \int \frac {\cos (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )}+\frac {b \left (\frac {x}{2}+\frac {1}{2} \sin (x) \cos (x)\right )}{a^2+b^2}\)

\(\Big \downarrow \) 3577

\(\displaystyle -\frac {a b \left (\frac {b \int \frac {b \cos (x)-a \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a x}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )}+\frac {b \left (\frac {x}{2}+\frac {1}{2} \sin (x) \cos (x)\right )}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a b \left (\frac {b \int \frac {b \cos (x)-a \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a x}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )}+\frac {b \left (\frac {x}{2}+\frac {1}{2} \sin (x) \cos (x)\right )}{a^2+b^2}\)

\(\Big \downarrow \) 3612

\(\displaystyle \frac {a \sin ^2(x)}{2 \left (a^2+b^2\right )}+\frac {b \left (\frac {x}{2}+\frac {1}{2} \sin (x) \cos (x)\right )}{a^2+b^2}-\frac {a b \left (\frac {a x}{a^2+b^2}+\frac {b \log (a \cos (x)+b \sin (x))}{a^2+b^2}\right )}{a^2+b^2}\)

input
Int[(Cos[x]^2*Sin[x])/(a*Cos[x] + b*Sin[x]),x]
 
output
-((a*b*((a*x)/(a^2 + b^2) + (b*Log[a*Cos[x] + b*Sin[x]])/(a^2 + b^2)))/(a^ 
2 + b^2)) + (a*Sin[x]^2)/(2*(a^2 + b^2)) + (b*(x/2 + (Cos[x]*Sin[x])/2))/( 
a^2 + b^2)
 

3.3.78.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3577
Int[cos[(c_.) + (d_.)*(x_)]/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_. 
) + (d_.)*(x_)]), x_Symbol] :> Simp[a*(x/(a^2 + b^2)), x] + Simp[b/(a^2 + b 
^2)   Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c + d*x 
]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
 

rule 3588
Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_. 
) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[b 
/(a^2 + b^2)   Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x], x] + (Simp[a/(a 
^2 + b^2)   Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x], x] - Simp[a*(b/(a^ 
2 + b^2))   Int[Cos[c + d*x]^(m - 1)*(Sin[c + d*x]^(n - 1)/(a*Cos[c + d*x] 
+ b*Sin[c + d*x])), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] 
&& IGtQ[m, 0] && IGtQ[n, 0]
 

rule 3612
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]) 
/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x 
_Symbol] :> Simp[(b*B + c*C)*(x/(b^2 + c^2)), x] + Simp[(c*B - b*C)*(Log[a 
+ b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2))), x] /; FreeQ[{a, b, c, 
d, e, A, B, C}, x] && NeQ[b^2 + c^2, 0] && EqQ[A*(b^2 + c^2) - a*(b*B + c*C 
), 0]
 
3.3.78.4 Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.05

method result size
default \(-\frac {a \,b^{2} \ln \left (a +b \tan \left (x \right )\right )}{\left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (\frac {1}{2} a^{2} b +\frac {1}{2} b^{3}\right ) \tan \left (x \right )-\frac {a^{3}}{2}-\frac {a \,b^{2}}{2}}{1+\tan \left (x \right )^{2}}+\frac {b \left (a b \ln \left (1+\tan \left (x \right )^{2}\right )+\left (-a^{2}+b^{2}\right ) \arctan \left (\tan \left (x \right )\right )\right )}{2}}{\left (a^{2}+b^{2}\right )^{2}}\) \(98\)
parallelrisch \(\frac {-a^{3} \cos \left (2 x \right )-a \,b^{2} \cos \left (2 x \right )+a^{2} b \sin \left (2 x \right )+b^{3} \sin \left (2 x \right )-4 a \,b^{2} \ln \left (\frac {-a \cos \left (x \right )-b \sin \left (x \right )}{\cos \left (x \right )+1}\right )+4 a \,b^{2} \ln \left (\frac {1}{\cos \left (x \right )+1}\right )-2 x \,a^{2} b +2 x \,b^{3}+a^{3}+a \,b^{2}}{4 \left (a^{2}+b^{2}\right )^{2}}\) \(108\)
risch \(\frac {x b}{4 i b a -2 a^{2}+2 b^{2}}-\frac {{\mathrm e}^{2 i x}}{8 \left (-i b +a \right )}-\frac {{\mathrm e}^{-2 i x}}{8 \left (i b +a \right )}+\frac {2 i a \,b^{2} x}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {a \,b^{2} \ln \left ({\mathrm e}^{2 i x}-\frac {i b +a}{i b -a}\right )}{a^{4}+2 a^{2} b^{2}+b^{4}}\) \(125\)
norman \(\frac {\frac {b \tan \left (\frac {x}{2}\right )}{a^{2}+b^{2}}+\frac {2 a \tan \left (\frac {x}{2}\right )^{2}}{a^{2}+b^{2}}+\frac {2 a \tan \left (\frac {x}{2}\right )^{4}}{a^{2}+b^{2}}-\frac {b \tan \left (\frac {x}{2}\right )^{5}}{a^{2}+b^{2}}-\frac {b \left (a^{2}-b^{2}\right ) x}{2 \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {3 b \left (a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )^{2}}{2 \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {3 b \left (a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )^{4}}{2 \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {b \left (a^{2}-b^{2}\right ) x \tan \left (\frac {x}{2}\right )^{6}}{2 \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}}{\left (1+\tan \left (\frac {x}{2}\right )^{2}\right )^{3}}+\frac {a \,b^{2} \ln \left (1+\tan \left (\frac {x}{2}\right )^{2}\right )}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {a \,b^{2} \ln \left (\tan \left (\frac {x}{2}\right )^{2} a -2 b \tan \left (\frac {x}{2}\right )-a \right )}{a^{4}+2 a^{2} b^{2}+b^{4}}\) \(295\)

input
int(cos(x)^2*sin(x)/(a*cos(x)+b*sin(x)),x,method=_RETURNVERBOSE)
 
output
-a*b^2/(a^2+b^2)^2*ln(a+b*tan(x))+1/(a^2+b^2)^2*(((1/2*a^2*b+1/2*b^3)*tan( 
x)-1/2*a^3-1/2*a*b^2)/(1+tan(x)^2)+1/2*b*(a*b*ln(1+tan(x)^2)+(-a^2+b^2)*ar 
ctan(tan(x))))
 
3.3.78.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.01 \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a b^{2} \log \left (2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} + b^{2}\right ) + {\left (a^{3} + a b^{2}\right )} \cos \left (x\right )^{2} - {\left (a^{2} b + b^{3}\right )} \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} b - b^{3}\right )} x}{2 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )}} \]

input
integrate(cos(x)^2*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="fricas")
 
output
-1/2*(a*b^2*log(2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos(x)^2 + b^2) + (a^3 + 
 a*b^2)*cos(x)^2 - (a^2*b + b^3)*cos(x)*sin(x) + (a^2*b - b^3)*x)/(a^4 + 2 
*a^2*b^2 + b^4)
 
3.3.78.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\text {Timed out} \]

input
integrate(cos(x)**2*sin(x)/(a*cos(x)+b*sin(x)),x)
 
output
Timed out
 
3.3.78.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 212 vs. \(2 (87) = 174\).

Time = 0.33 (sec) , antiderivative size = 212, normalized size of antiderivative = 2.28 \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a b^{2} \log \left (-a - \frac {2 \, b \sin \left (x\right )}{\cos \left (x\right ) + 1} + \frac {a \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}}\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {a b^{2} \log \left (\frac {\sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} - \frac {{\left (a^{2} b - b^{3}\right )} \arctan \left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1}\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {\frac {b \sin \left (x\right )}{\cos \left (x\right ) + 1} + \frac {2 \, a \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} - \frac {b \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}}}{a^{2} + b^{2} + \frac {2 \, {\left (a^{2} + b^{2}\right )} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + \frac {{\left (a^{2} + b^{2}\right )} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}}} \]

input
integrate(cos(x)^2*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="maxima")
 
output
-a*b^2*log(-a - 2*b*sin(x)/(cos(x) + 1) + a*sin(x)^2/(cos(x) + 1)^2)/(a^4 
+ 2*a^2*b^2 + b^4) + a*b^2*log(sin(x)^2/(cos(x) + 1)^2 + 1)/(a^4 + 2*a^2*b 
^2 + b^4) - (a^2*b - b^3)*arctan(sin(x)/(cos(x) + 1))/(a^4 + 2*a^2*b^2 + b 
^4) + (b*sin(x)/(cos(x) + 1) + 2*a*sin(x)^2/(cos(x) + 1)^2 - b*sin(x)^3/(c 
os(x) + 1)^3)/(a^2 + b^2 + 2*(a^2 + b^2)*sin(x)^2/(cos(x) + 1)^2 + (a^2 + 
b^2)*sin(x)^4/(cos(x) + 1)^4)
 
3.3.78.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.68 \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a b^{3} \log \left ({\left | b \tan \left (x\right ) + a \right |}\right )}{a^{4} b + 2 \, a^{2} b^{3} + b^{5}} + \frac {a b^{2} \log \left (\tan \left (x\right )^{2} + 1\right )}{2 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )}} - \frac {{\left (a^{2} b - b^{3}\right )} x}{2 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )}} - \frac {a b^{2} \tan \left (x\right )^{2} - a^{2} b \tan \left (x\right ) - b^{3} \tan \left (x\right ) + a^{3} + 2 \, a b^{2}}{2 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\tan \left (x\right )^{2} + 1\right )}} \]

input
integrate(cos(x)^2*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="giac")
 
output
-a*b^3*log(abs(b*tan(x) + a))/(a^4*b + 2*a^2*b^3 + b^5) + 1/2*a*b^2*log(ta 
n(x)^2 + 1)/(a^4 + 2*a^2*b^2 + b^4) - 1/2*(a^2*b - b^3)*x/(a^4 + 2*a^2*b^2 
 + b^4) - 1/2*(a*b^2*tan(x)^2 - a^2*b*tan(x) - b^3*tan(x) + a^3 + 2*a*b^2) 
/((a^4 + 2*a^2*b^2 + b^4)*(tan(x)^2 + 1))
 
3.3.78.9 Mupad [B] (verification not implemented)

Time = 29.67 (sec) , antiderivative size = 3419, normalized size of antiderivative = 36.76 \[ \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\text {Too large to display} \]

input
int((cos(x)^2*sin(x))/(a*cos(x) + b*sin(x)),x)
 
output
((b*tan(x/2))/(a^2 + b^2) + (2*a*tan(x/2)^2)/(a^2 + b^2) - (b*tan(x/2)^3)/ 
(a^2 + b^2))/(2*tan(x/2)^2 + tan(x/2)^4 + 1) - (a*b^2*log(a + 2*b*tan(x/2) 
 - a*tan(x/2)^2))/(a^4 + b^4 + 2*a^2*b^2) + (4*a*b^2*log(1/(cos(x) + 1)))/ 
(4*a^4 + 4*b^4 + 8*a^2*b^2) - (b*atan((tan(x/2)*((((4*a*b^2*((b*(a + b)*(a 
 - b)*((8*(12*a^4*b^6 + 24*a^6*b^4 + 12*a^8*b^2))/(a^6 + b^6 + 3*a^2*b^4 + 
 3*a^4*b^2) - (32*a*b^2*(12*a*b^10 + 48*a^3*b^8 + 72*a^5*b^6 + 48*a^7*b^4 
+ 12*a^9*b^2))/((4*a^4 + 4*b^4 + 8*a^2*b^2)*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4 
*b^2))))/(2*(a^4 + b^4 + 2*a^2*b^2)) - (16*a*b^3*(a + b)*(a - b)*(12*a*b^1 
0 + 48*a^3*b^8 + 72*a^5*b^6 + 48*a^7*b^4 + 12*a^9*b^2))/((4*a^4 + 4*b^4 + 
8*a^2*b^2)*(a^4 + b^4 + 2*a^2*b^2)*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2))))/ 
(4*a^4 + 4*b^4 + 8*a^2*b^2) - (b*(a + b)*((8*(2*a*b^8 - 7*a^3*b^6 - 8*a^5* 
b^4 + a^7*b^2))/(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2) - (4*a*b^2*((8*(12*a^4 
*b^6 + 24*a^6*b^4 + 12*a^8*b^2))/(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2) - (32 
*a*b^2*(12*a*b^10 + 48*a^3*b^8 + 72*a^5*b^6 + 48*a^7*b^4 + 12*a^9*b^2))/(( 
4*a^4 + 4*b^4 + 8*a^2*b^2)*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2))))/(4*a^4 + 
 4*b^4 + 8*a^2*b^2))*(a - b))/(2*(a^4 + b^4 + 2*a^2*b^2)) + (b^3*(a + b)^3 
*(a - b)^3*(12*a*b^10 + 48*a^3*b^8 + 72*a^5*b^6 + 48*a^7*b^4 + 12*a^9*b^2) 
)/((a^4 + b^4 + 2*a^2*b^2)^3*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2)))*(a^6 - 
b^6 + 35*a^2*b^4 - 35*a^4*b^2))/(a^6 + b^6 + 15*a^2*b^4 + 15*a^4*b^2)^2 - 
(2*a*b*(5*a^4 + 5*b^4 - 26*a^2*b^2)*((8*(2*a^2*b^6 + a^4*b^4))/(a^6 + b...